
1

ReadScoreLib V4.3.X.X © Organum/Dolphin

ReadScoreLib Optical Music Recognition Library

(documentation relates to RSL 4.3.X.X)

ReadScoreLib from Organum is a comprehensive OMR system for converting

printed/engraved music notation to MIDI and MusicXML. The library and output is fully

compatible with Dolphin’s SeeScore SDK which provides full music rendering and

MusicXML query capabilities.

ReadScoreLib is designed to cope with a wide range of engraved and printed notation from

19th Century engravings to those produced by modern score writing software. It supports

published score images, scanned scores as well as photographically distorted images

photographed with a device camera. ReadScoreLib does not support handwritten music or

novelty fonts such as Real Books, or special notation dialects such as Shape notes and colour

notes.

The performance of the library varies according to platform but on an average with an iPhone

11 a page of music takes 1-2 seconds to process.

ReadScoreLib applies musical rules and can compensate for missing elements such as time

signatures, rests and tuplet marks, all of which are common in printed music. The library can

also deal with variable size systems, varying staff gauges, partial staves and transposing

instruments. The MIDI files generated by ReadScoreLib play naturally and continuously and

without the jerks and jumps which is sometimes seen in OMR output. ReadScoreLib is also

the only OMR system to support the varied tremolo notations often found in printed music.

The PlayScore app

The PlayScore app uses ReadScoreLib and can be used to evaluate the library.

PlayScore 2 is available on the Apple App Store and on the Android Play Store. PlayScore 2

is kept up to date with the latest library.

Platform APIs

This documentation describes the C language interface to ReadScoreLib. The ReadScoreLib

SDKs for iOS/macOS and Android provide APIs for Swift, and Java respectively. These

APIs are equivalent to the C API described here. Their use will be apparent from the

documentation below.

2

ReadScoreLib V4.3.X.X © Organum/Dolphin

Recognition from a memory resident bitmap image
rscore_convert accepts a page of music in memory and generates corresponding MIDI and

MusicXML files subject to selected options

 rscore* rscore_convert(read an image (32bpp RGBA) and
convert to MIDI and/or XML files

 const unsigned* data array of 32bit pixels in (32bpp
RGBA) format with the alpha
channel (bits 24 – 31) should be
zero

 int imageWidth the pixel width of the image

 int imageHeight The pixel height of the image

 int rowbytes the byte offset from one row to
the next and must be a multiple of
4

 enum
rscore_imageorientation

orientation the orientation of the image. See
rscore_imageorientation

 rscore_progress_callback cb user-supplied callback called
periodically to report progress
and allow the process to be
abandoned
pass NULL if no callback desired

 Void* arg the context argument to be passed
to cb

 const char* midifilepath if non-null the MIDI file is
written to the full path
midifilepath

 const char* xmlfilepath if non-null the MusicXML file is
written to the full path
xmlfilepath

 const rscore_options* options Information including bits
specifying selected options (see
rscore_optionsflags)

 Unsigned* Image_out for use only when rscore_optLens
selected: rectilinearised image
written to image_out. Set NULL
otherwise

 rscore_errorinfo* err if non-null points to a struct
which receives any error
information

 Return handle to rscore instance. handle
should be deleted on completion
with rscore_delete

Image dimensions

The input image is laid out as a series of concatenated rows each pixel of which occupies one

32-bit word. image points to the top left word. The layout is RGB with the remaining (ms)

byte set to zero.

The width and height arguments are in pixel units. The rowbytes argument allows a section

of a larger image to be processed. This is done by setting image to the top left word of the

subimage, width and height to those of the subimage and rowbytes the width of the full

image.

3

ReadScoreLib V4.3.X.X © Organum/Dolphin

Music segments

ReadScoreLib can recognise multiple areas of musical notation as for example might be

found on a page of text containing musical examples. The positioning and size of these areas

may be varied but will be read as a vertical sequence. Multiple columns of music are not

currently supported.

Where there are multiple areas, or where a page containing multiple short pieces, or where

one piece ends and another begins, the output MIDI and MusicXML will be continuous (as

anything else would alter the music). However, by using rscore_getbarinfo and in particular

the rscore_firstOfSection flag it is possible for an application to identify boundaries. And by

using coordinate information (see rscore_optXmlDefaultCoords and optXmlObjectBounds) a

rich graphical application is possible.

Preprocess only mode (see rscore_optLens)

For some applications access may be needed to the preprocesed image (see table below).

This can be useful where images are distorted or poorly defined. The preprocessed image in

black and white with distortions removed is often easier for a human to read and may be

more amenable to further graphical processing.

When the rscore_optLens ptions flag is set only preprocessing takes place with the resulting

image passed back through the image_out argument. The user supplied memory bitmap

specified by image_out has exactly the same format as image except that rowbytes will be

ignored and the image will be written to a contiguous block of memory of size (width *

height) * 4.

NB The ReadScoreLib rscore_optXmlObjectBounds feature provides bounding box

information for musical objects relative to the original input image; that is before

preprocessing. If an application requires bounding box information relative to the

preprocessed image it can be obtained by first preprocessing the image using the

rscore_optXmlObjectBounds option and then submitting the preprocessed image for normal

recognition without the flag.

NB Lens processing can only be performed using rscore_convert, one image at a time.

Progress callback

The cb argument allows the caller to specify a function to be called periodically to report

progress as a percentage. cb should conform to the prototype

typedef bool (*rscore_progress_callback)(const rscore_convert_progressinfo *info, void

*arg);

4

ReadScoreLib V4.3.X.X © Organum/Dolphin

for example

bool cb(const rscore_convert_progressinfo *info, void *arg) {

 printf("%d% complete ", info->progress_percent);

 return true;

}

cb will be called by ReadScoreLib with the progress_percent member of the passed in

rscore_convert_progressinfo struct giving the percentage of the job completed.

cb should normally return true. A false return will cause the job to be abandoned and control

from rscore_convert to return.

5

ReadScoreLib V4.3.X.X © Organum/Dolphin

Recognition from a sequence of memory images
rscore_bconvert set of functions allow multiple memory-resident page images to be built into

single MIDI and MusicXML files subject to selected options

 rscore* rscore_bconvert_begin(read one or more page image files and
output corresponding MIDI and MusicXML
files

 rscore_progress_callback cb user-supplied callback called
periodically during the build process
to report progress and allow the
process to be abandoned
pass NULL if no callback desired

 void* arg the context argument to be passed to
cb

 rscore_options* options Information including bits specifying
selected options (see
rscore_optionsflags)

 Return rscore_errorinfo handle to rscore instance

 rscore* rscore_bconvert(read one or more page image files
and output corresponding MIDI and
MusicXML files

 rscore* rsc The rscore instance handle returned
from rscore_bconvert_begin

 const unsigned* data array of 32bit pixels in (32bpp
RGBA) format with the alpha
channel (bits 24 – 31) should be
zero

 int imageWidth the pixel width of the image

 int imageHeight The pixel height of the image

 int rowbytes the byte offset from one row to
the next and must be a multiple of
4

 enum
rscore_imageorientation

orientation the orientation of the image. See
rscore_imageorientation

 Return rscore_errorinfo error information

 rscore* rscore_bconvert_end(read one or more page image files and
output corresponding MIDI and MusicXML
files

 rscore* rsc The rscore instance handle returned
from rscore_bconvert_begin

 const char* boundsFilePath If non-NULL the full path to which
object bound information will be
written (see
rscore_optXmlObjectBounds)

 const char* midiFilePath if non-null the full path to which the
MIDI file will be written

 const char* xmlFilePath if non-null the full path to which the
MusicXML file will be written

 Return rscore_errorinfo error information

6

ReadScoreLib V4.3.X.X © Organum/Dolphin

The three rscore_bconvert functions allow multi-page music to be built into MIDI and

MusicXML files. These functions can also be used to create a text file specifying the

coordinates of objects within the images.

When a series of images is built using the rscore_bconvert functions they are built as

continuous music rather than as a series of pages. As new files are submitted with

rscore_bconvert a parse tree is built for each page. When rscore_bconvert_end is called the

sequence is converted to a linear relational format. This representation is continuous over

pages so that cross-page features such as part bars, slurs and ties can be translated faithfully.

At this point also, statistical information is extracted and applied globally to improve general

recognition accuracy. Finally MusxicXML is generated from the internal relational

representation.

Since any sequence of pages submitted between rscore_bconvert_begin and

rscore_bconvert_end will be built into a continuous MusicXML stream, it is best to break the

music up into individual movements and to submit these separately. For each sequence,

rscore_bconvert_begin is called first. This establishes any progress/cancellation callback and

returns a handle to the ReadScoreLib for the present session.

The rscore handle is then used to submit pages of music in sequence via rscore_bconvert.

This function takes the same image parameters as the single-page rscore_convert API

described above. See description above for details. The rscore_error return may be checked

for status information relating to the image.

When all pages have been submitted through rscore_bconvert, rscore_bconvert_end should

be called to complete the build. This function takes the paths to desired MIDI, MusicXML

and bounding-box-ID file.

Progress callback

ReadScoreLib processes music in two stages Rather than treat each page as a separate unit,

rscore_bconvert creates a syntax tree for the whole input, page by page as described above.

Because of this organisation the progress callback functions for rscore_convert and

rscore_bconvert work differently. Whereas rscore_convert calls the progress function in a

single sequence with progress_percent advancing from 0 to 100, rscore_bconvert does this

for each file and then one additional time when rscvore_bconvert_end is called for the final

stage of processing. progress_percent takes the value zero exactly once for each file

allowing the transition from one to the next to be detected. When every page has been

processed progress_percent once again begins at zero, reaching a maximum close to 100

when the whole task is complete. If the callback should return false at any point the whole

build is abandoned.

7

ReadScoreLib V4.3.X.X © Organum/Dolphin

This arrangement allows the client application to implement a progress indicator for the

whole process, incrementing only on the zero transitions, or perhaps a few times during each

rscore_convert call. Since the number of pages will be known the progress indicaror can be

arranged to asvance smoothluy from 0 to 100. If desired a per-page progress indicator is also

possible.

General information

Input images

ReadScoreLib accepts a wide range of input quality, resolution, exposure and geometric

distortion. For good results the scale of the submitted bitmaps should be such that the

distance in pixels between individual staff lines is at least 10. For best results this distance

should be between 15 and 24. Larger scales are possible but performance deteriorates as the

square of linear distance. If the image is clear a metric of 16 will often give good results at

two or three seconds per page on an iPhone 6.

The table below gives suitable ranges for image capture from music using different capture

methods. For best results for a particular type of music, experiment with any parameters

under your control such as light and scale.

Device Scale Comments

Scanner Scan at 280 – 310DPI

PDF to JPG

converters

Set converter to 300 –

500DPI

It is worth trying a wide range of conversion

DPI, especially where the image quality

appears poor

Photography Aim for a staff metric

between 14 and 18

Take image in good light and aim for a

minimum of spherical and other photographic

distortion.

From a book Ensure that the page lies as flat as possible.

The left side especially, where the system line

and the signatures are should be clear

PDF and other

images created by

score writers such as

Sibelius, Finale,

Dorico etc

Convert from PDF at

150 – 300DPI

Ensure that the image is dark enough to show

features such as staff lines and stems clearly.

These images can sometimes be bright and

have thin lines. This can cause poor results

The image may be in colour, greyscale or monochrome. Greyscale is usually better as

ReadScoreLib can choose its own threshold at different areas of the image. See below for

more information on the preprocessing transformations applied

Image preprocessing

Before any music recognition takes place ReadScoreLib prepares each image as follows:

8

ReadScoreLib V4.3.X.X © Organum/Dolphin

 Preprocessing transformations

 Thresholding Image is converted from colour, greyscale or monochrome to
binary. The techniques used attempt to allow for variations
in colour and shading

 clipping Material surrounding one or more areas of musical (for
example in a device photograph) notation is stripped away

 Linearisation The image squared up: Distortions such as photographic
distortions are reversed leaving staff lines straight and
level

 Segmented rotation In some circumstances the image is broken into sections that
are independently deskewed and dovetailed

The preprocessed image can be useful for some applications and is available using the

rscore_optLens option.

When enabled the rscore_optDeskewMonochrome option causes monochrome pages to be

subjected to segmented rotation instead of thresholding and linearisation

Image scale

For good accuracy ReadScoreLib requires an image where the vertical distance between staff

lines is at least 9 pixels. The ideal range is 15 - 25

Operation abort

The calling process can cancel processing by returning false from the progress callback

Options
The options argument allows the caller to specify certain processing options as well as the

application name and version as required for the XML identification element. Music parsing

and MusicXML generation options are selected through bits set in the rscore_options::flags

word (see below)

Certain flags such as rscore_optParseTremolo can be used to reduce the risk of recognition

false positives by suppressing parsing for particular constructs. Normally these flags should

be set unless the music is known to be free of a particular construct.

 Option flags

 rscore_optParseTremolo recognise tremolo notations (flag now has no effect
as tremolo support is permanently enabled)

 rscore_optXmlDefaultCoords Generate MusicXML Default x, y attributes

 rscore_optXmlObjectBounds Generate a text file listing the bounds of objects.
The text file has the same name as the XML file but
with the TXT extension

 rscore_optTransposingInstruments Guess transposing instrument transpositions where
possible from key signature

 rscore_optFrenchTimeSignatures Recognise French time signatures (those engraved in
parentheses above the barline)

 rscore_optLens write preprocessed image to the address supplied by

9

ReadScoreLib V4.3.X.X © Organum/Dolphin

the image_out parameter

 rscore_optLayout

include MusicXML print elements to reflect the
system and page boundaries that were found in the
score. This will preserve the score’s page and
system layout exactly.

 rscore_optDark

Suppress RSL’s normal adaptive thresholding and
instead perform a simple 50% threshold. This can
sometimes be useful for dark images. To suppress
all thresholding provide pre-thresholded images.

 rscore_optSuppressOptimisation

Disable the false relation feature

 rscore_optMIDISwing

MIDI only: Apply the wing music convention to the
MIDI output

 rscore_optMIDISplitStaff

MIDI only: direct the MIDI output for each staff
into two channels rather than one. The channels
correspond to a stem-down and a stem-up part

Tremolo

ReadScoreLib supports the following tremolo notations. Between one and four strokes are

recognised.

1) Stem crossing strokes

2) two note tremolos

3) Alternative notations

Transposing instruments

Normally ReadScoreLib assumes all instruments untransposing and makes use of all key

signature information in establishing the key. If the rscore_optTransposingInstruments flag

is set this assumption is no longer made and transposing instruments are where possible

identified from their key signatures. In these cases the appropriate transpositions are written

into the MusicXML file and the correct key signature specified. However note that not all

transposing instruments can be recognised in this way. These are of two types:

1) Octave transpositions such as the piccolo and the double bass.

2) Instruments such as horn and trumpet. These are normally written without key signature

and cannot be deduced.

10

ReadScoreLib V4.3.X.X © Organum/Dolphin

In addition to the rscore_optTransposingInstruments flag, rscore_options::isosig (lowest

setting 1) can be used to define the number of staves, counting from the bottom that will be

presumed to have the same key signature. The larger isosig the greater the amount of

redundancy RSL can take advantage of, and therefore the more accurate the recognition of

scores where the image quality is poor.

ReadScoreLib will shortly be providing support for OCR text (see below). This will include

instrument names, thereby allowing more comprehensive support for transposing

instruments.

Split staff

The MIDI generated by RSL is divided into channels with one channel per staff. When

rscore_optMIDISplitStaff is set two channels are allocated to every channel. With this setting

the music in each staff is conceived as being in two voices which are directed to the two

channels, the lower voice having the lower channel. This affects only MIDI output. The

division into channels in no way affects the voice assignment in the MusicXML output.

Swing

Swing is a performance convention in which the length of certain notes and rests is altered to

create the swing effect. Swing does not affect how the music looks, just how it sounds and

applies in RSL only to MIDI output. Swing MIDI is generated when the rscore_optMIDISwing

flag is set.

Optimisation

ReadScoreLib uses a number of mechanisms for reconstructing missing or indistinct musical

constructs arising from poor score quality or photography. Several of these attempt to

correct missing, occluded or otherwise doubtful accidentals. One of these methods although

generally helpful can create unwanted effects in some music. This optimisation looks for

cases where notes on the same beat in different voices, or within a chord on a single voice lie

on the same degree of scale but have different accidental modification. This usually happens

because an accidental is missing in the score, or one is recognised incorrectly for some

reason, and generally improves accuracy. However in some music false relations as they are

known are intentional. They are not uncommon in Mozart for example. For this reason the

feature can be suppressed with the rscore_optSuppressOptimisation.

It may prove best to suppress the feature for good quality scores of classical music. For most

other kinds of music the incidence of missing or misrecognised accidentals is generally

greater than that of intentional false relations and accuracy will be better with the feature left

on.

Establishing the location of objects

ReadScoreLib provides several features that allow an application to obtain the identity and

location of recognised score objects. The requirements of such a system go beyond the scope

of MusicXML. MusicXML does support a Default x/y attribute type but these are unsuitable

11

ReadScoreLib V4.3.X.X © Organum/Dolphin

because they apply to some objects only and supply only a single pair of coordinates, rather

than full bounding box information. Moreover Default x/y is a hint facility and if used rigidly

to specify the coordinates of objects on the original page unpredictable behaviour is likely

when the music is rendered. ReadScoreLib can generate Default x/y but the XML produced

is intended for use as a key into the text file and not as an aid to rendering.

As MusicXML cannot itself contain the information required to locate and bound objects in

the original image, ReadScoreLib writes this information to a separate file. The pathname to

the file is specified in the rscore_bconvert_end API. In addition, the same information is

added as comments to the MusicXML file.

The present version (3.1) of MusicXML lacks a comprehensive system of unique identifiers

for objects. ReadScoreLib therefore provides an alternative mechanism based on the Default

x/y attribute, used as a key into the text file. Alternatively if XML comments can be read by

the XML client, bounding box information can be accessed directly.

When rscore_optXmlObjectBounds is set ReadScoreLib generates bounding box information

in both forms, as comments in the XML file and as a separate text file. If the XML client

cannot read these comments in the course of reading the object itself, the

rscore_optXmlDefaultCoord flag can be used to select Default x/y attribute generation. The

application software can then use this as a key into the corresponding bounding box

information in the text file. As it reads an object (eg a rest), the MusicXML client (the XML

parsing software) will read the Default x/y attribute. The coordinate information can then be

used to look up the bounding box information in the text file. To make key duplication

unlikely Default x/y attribute is given a five digit floating point precision. The two digits

after the decimal point are randomised slightly to provide a unique key without affecting the

positioning of objects when rendered.

NB Default x/y attributes sometimes give rise to unexpected results in rendering software as

they reduce the client’s ability to format a score freely. It is generally better to run RSL

separately with rscore_optXmlDefaultCoord set specifically for the purpose of generating

coordinates, and otherwise to leave it unset.

The bounding-box-ID text file has a simple format consisting of one line of text for each

object.

<barnumber>_<ref-x>_<ref-y>: <object-name> (<pagenumber>, <bounds>)

Where <ref-x>_<ref-y> is the Default x/y attribute referencing the MusicXML file. Where

an XML construct does not carry Default x/y (-1, -1) is substituted.

For example the following represents a clef found on page 5 (numbered from 1) enclosed

within a box whose bottom-left and top-right corners lie at (584,2735) and (612,2797)

12

ReadScoreLib V4.3.X.X © Organum/Dolphin

2_51.001_406:clef (5,584,2735,612,2797)

Barlines, rests, accidentals and text (dynamics), ties and slurs follow the same format.

Some objects specify coordinates adapted to their positioning as musical objects. A note

head for example specifies its centre only, as other dimensions can be deduced from the staff

gauge.

<barnumber>_<ref-x>_<ref-y>:head (<pagenumber>, <point-xy>)

The sequence of entries in the text file reflects music syntax. A stem on its own is

represented by a “stem” entry followed by one or more head entries. Where stems are

beamed a “group” entry appears first. The following sequence is the first “group” sequence

from plolnaise.txt as derived from the polonaise.jpg example.

1_-1_-1:group (1,525,2314,750,2516)

1_-1_-1:stem (1,556,2473,556,2318)

1_254.01_-154.99:head (1,545,2304)

1_254.01_-86.986:head (1,545,2372)

1_-1_-1:group (1,647,2384,671,2436)

1_368.01_-48.984:rest (1,647,2384,671,2436)

1_-1_-1:stem (1,747,2516,747,2386)

1_445.02_-85.982:head (1,736,2373)

1_445.02_-47.98:head (1,736,2411)

1_445.02_-18.978:head (1,736,2440)

The rest in this example is the rest between the beamed stems.

In scores where systems are not all the same size, a special entry makes it possible to

determine the physical staff for a MusicXML part

<barnumber>_<ref-x>_<ref-y>: staffspace(<pagenumber>, <staff-gauge>, <staff-count>,

<staff-index>)

As already explained, <ref-x> and <ref-y) are not intended to specify a location in space, but

to provide a unique link between MusicXCML and The bounding-box-ID text file as

described above.

Barline (measure) information

For applications that require only barline information (eg for score following) ReadScoreLib

can be queried directly for the position and height of every barline in the score without

recourse to the MusicXML or the text file. The getbarcount and rscore_barinfo APIs are

used to obtain the positions and heights of barlines in the coordinates of the original page.

13

ReadScoreLib V4.3.X.X © Organum/Dolphin

 int rscore_getbarcount Return the total number of bars in the
input

 rscore* rsc handle to rscore instance

 rscore_barinfo rscore_getbarinfo(

 rscore* rsc handle to rscore instance

 int barindex the index of the bar
[0..rscore_getbarcount-1]

 struct rscore_barinfo Barline information

 rscore_barline opening_barline position of opening barline

 rscore_barline closing_barline position of closing barline

 int startbeat the starting beat number of this bar

 int beatcount the number of beats in this bar

 Unsigned flags see rscore_barflags

 int first_beat_offset **percentage** of bar width to the
left of the first note or rest

 struct rscore_barline Barline dimensions

 rscore_point base the barline lower point

 int height The height in pixels

 enum rscore_barflags Barline flags

 rscore_firstOfSystem marks the leftmost bar in the system

 rscore_eoscore marks the last bar in the score

 rscore_splitbarL box encloses the part of the bar at the
end of one system

 rscore_splitbarR box encloses the part of the bar at the
beginning of the next system

 rscore_firstOfSection marks the first bar of a section, for
example where one movement ends
and another begins on the same page

Errors
Error status is normally reported through a passed-in rscore_errorinfo struct giving details of

the error (see rscore.h for details).

Version information can be retrieved through the rscore_version struct.

Supported platforms
ReadScoreLib libraries are available for Windows, Mac, Android and iOS.

Legal information

14

ReadScoreLib V4.3.X.X © Organum/Dolphin

Music copyright

Much music is subject to copyright. Where copyright applies it is the licensee’s

responsibility to establish whether a particular use of ReadScoreLib is legal.

Liability

ReadScoreLib is supplied as is. Organum Limited and Dolphin Computing Limited make no

warranty as to the conformance of ReadScoreLib to any particular specification or the

suitability of ReadScoreLib for any particular purpose.

Organum Limited and Dolphin Computing Limited shall not be liable in any way for loss,

cost, injury or harm that may result from use of ReadScoreLib

Licensed features

This documentation describes all ReadScoreLib features. Licensees should consult their

particular license agreement for details of which features are covered.

Appendix 1 – Deprecated API

Recognition from a sequence of memory images
rscore_fconvert accepts one or more images of music notation and generates corresponding

MIDI and MusicXML files subject to selected options

 rscore* rscore_fconvert(read one or more page image files
and output corresponding MIDI and
MusicXML files

 const char* buildfilepath single image file - the full path
to the image file
multiple image files – the full
path to a build file containing a
list of JPG image files

 const char* midifilepath if non-null the MIDI file is
written to the full path
midifilepath. Otherwise it is
written to the build file
directory

 const char* xmlfilepath if non-null the MusicXML file is
written to the full path
xmlfilepath. Otherwise it is
written to the build file
directory

 rscore_progress_callback cb user-supplied callback called
periodically to report progress
and allow the process to be
abandoned
pass NULL if no callback desired

 Void* arg the context argument to be passed
to cb

15

ReadScoreLib V4.3.X.X © Organum/Dolphin

 rscore_options* options Information including bits
specifing selected options (see
rscore_optionsflags)

 rscore_errorinfo* err if non-null points to a struct
which receives any error
information

 Return handle to rscore instance. handle
should be deleted on completion
with rscore_delete

rscore_fconvert operates in two modes. If buildfile is an image file (has one of the supported

image extensions1) that image will be treated as the sole input. If buildfile is not an image

file it will be read as a text file containing the list of image files to be built together as a

single unit. The named build file should consist of a list of image names, one per line and

without paths. For example if mybuild.txt contains the following

myimage1.jpg

myimage2.jpg

myimage3.jpg

a call to rscore_fconvert giving the full path to mybuild,txt would look for myimage1.jpg,

myimage2.jpg and myimage3.jpg in the same directory as mybuild.txt and treat the three as a

single, piece of music. A single MIDI and a single MusicXML file will be generated.

Unlike rscore_convert MIDI and MusicXML files are always generated. By default, if

midifilepath is NULL a MIDI file, named after the build file will be written to the same

directory. If midifilepath is a full path, name and extension, the MIDI file will be written

there. xmlfilepath is treated in exactly the same way.

Appendix 2 – Supported musical symbols

RSL supports

• Bars, notes, rests, accidentals including double accidentals, cancelling accidentals and

cautionary accidentals

• Braces groups of staves representing a single instrument (eg piano) with multi-staff

stems, cross-staff beaming and over-barline beaming

• Tuplets: triplets, duplets, quintuplets, septuplets etc (both marked and implied)

• Staff bracketing: grand staff braces, grouped staff brackets etc

• Measures: bar lines, double bar lines, repeats, 1st and 2nd ending, bars spanning

systems and pages

1 JPG only

16

ReadScoreLib V4.3.X.X © Organum/Dolphin

• Anacruses, compliment anacruses

• Dynamics: f, ff, fff, fz, fp, mf, p, pp etc

• Hairpins (crescendos and diminuendos)

• Articulation (>, ^, . –, portato etc)

• Ornaments trills, turns, mordents, shakes, spread chords, + etc

• Tremolo: note strikethrough, alternating, beamed alternating white notes etc

• Special symbols: fermata, repeat-bar, Ottava 8ve etc

• Fingering for piano, violin etc

• Slurs and ties

• Clefs (system and inline): neutral2, treble, bass, tenor, alto, soprano etc including

octave shift variants

• Key changes: system, inline, cautionary

• Time signatures: system, inline, cautionary and implied

2 The percussion clef is supported together with crossheads etc. This is included in the MusicXML output but

not MIDI.

